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Important changes and corrections in slides 7, 11 and 13!

The mistake in slide 13 was found by Ola S. 

Thank you, Ola.



Definition. (alternate definition od span) 

Let SV (a subset, not necessarily a subspace). Then by span(S) 

we denote the smallest subspace of V containing S. 

We call span(S) the subspace spanned by S.

One advantage of this definition over the other one is it covers 

the case S =  without branching.



Fact. 

Let V(S) denote the set of all subspaces of V containing S. Then

span(S) = ሩ

𝑇∈𝑉(𝑆)

𝑇

Proof. It is enough to show that intersection of a collection of 
subspaces is a subspace of V and that is easy. (All contain  so 
intersection does, too, etc.)



Theorem.

The set S={v1,v2, … ,vn} is linearly independent iff no vector 
from S is a linear combination of the others. 

Proof. () Suppose one of the vectors is a linear combination of 
the others. Without loss of generality we may assume that vn is 
the one, i.e. vn=a1v1+a2v2+ … .an−1vn-1. Then we may write 
=a1v1+a2v2+ … .an−1vn-1+(−1)vn. Since  −1  0 the set {v1,v2, … 
,vn} is linearly dependent.

() Suppose now that {v1,v2, … ,vn} is linearly dependent, i.e. 
there exist coefficients a1,a2, … ,an, not all of them zeroes, such 
that =a1v1+a2v2+ … .anvn. Again, without losing generality, we 
may assume that an0 (we can always renumber the vectors so 
that the one with nonzero coefficient is the last). Since nonzero 
scalars are invertible, we have vn=(−a1an

−1)v1 + (−a2an
−1)v2 + … 

+(−an−1an
−1)vn−1



Examples. (on linear independence)
Decide which sets are linearly independent:

1. 1,0 , (0,1) in ℝ2 over ℝ

2. 𝑥, 𝑦 , (2𝑥, 2𝑦) in ℝ2 over ℝ

3. 1,2,1 , 1,−2,1 , (2,0,2) in ℝ3 over ℝ

4. 1, 𝑥, 𝑥2, … , 𝑥𝑛 in 𝑅𝑛 𝑥 over ℝ

5. sin 𝑥, cos 𝑥, 𝑥 in ℝℝ over ℝ

6. 𝑎, 𝑏 , 𝑎 , in 2 𝑎,𝑏,𝑐 over ℤ2



Example 5. 

sin 𝑥, cos 𝑥, 𝑥 in ℝℝ over ℝ

Solution. Consider 𝑎 sin 𝑥 + 𝑏 cos 𝑥 + 𝑐 𝑥 = . The golden 
question is what the hell is  (zero vector) in ℝℝ? Obviously the 
constant zero function, (x)=0 for every x. Hence our condition 
means: (∀𝑥 ∈ ℝ) 𝑎 sin 𝑥 + 𝑏 cos 𝑥 + 𝑐 𝑥 = (x) =0. This means 
whatever number we replace x with the equality hold. Try x=0.
We get 𝑎0+𝑏1 + 𝑐0 = 0, which means b=0. Knowing b=0, try 

x=𝜋. This gives us 𝑎 0+0(−1) + 𝑐𝜋 = 0, so c=0. Putting 𝑥 =
𝜋

2
we get 𝑎1 = 0, a=0.



Theorem.

Suppose V is a vector space, dimV=n, n>0 and SV. Then 

1. If |S|=n and S is linearly independent then S is a basis for V

2. If |S|=n and span(S)=V then S is a basis for V

3. If S is linearly independent then S is a subset of a basis of V

4. If span(S)=V then S contains a basis of V

5. S is a basis of V iff S is a maximal linearly independent 
subset of V

6. S is a basis of V iff S is a minimal spanning set for V



Definition.

An mn matrix over a field 𝔽 is a function

A:{1,2,…,m}{1,2,…,n}→ 𝔽.

A matrix is usually represented by (and identified with) an mn
(“m by n”) array of elements of the field (usually numbers). The 
horizontal lines of a matrix are referred to as rows and the 
vertical ones as columns. The individual elements are called 
entries of the matrix. 

Thus an mn matrix has m rows, n columns and mn entries. 



Matrices will be denoted by capital letters and their entries by the 
corresponding small letters. Thus, in case of a matrix A we will 
write A(i,j)=ai,j and will refer to ai,j as the element of the i-th row 
and j-th column of A. 

On the other hand we will use the symbol [ai,j] to denote the 
matrix A with entries ai,j. Rows and columns of a matrix can (and 
will) be considered vectors from 𝔽 n and 𝔽 m, respectively, and 
will be denoted by r1,r2, … rm and c1,c2, … ,cn. The expression 
mn is called the size of a matrix.

A =

a1,1 a1,2 … a1,𝑛
a2,1 a2,2 … a2,𝑛
⋮ ⋮ … ⋮

a𝑚,1 a𝑚,2 … a𝑚,𝑛



Algebra of matrices

Definition.

Matrix addition is only defined for matrices of matching sizes, 

(A+B)(i,j) = A(i,j)+B(i,j), 1 i m, 1 j n (addition of functions).

(cA)(i,j) = cA(i,j), 1 i m, 1 j n (multiplication of a function 
by a constant)

Fact.

The set of all mn matrices over a field 𝔽 (𝔽𝑚𝑛) with these 
operations is a vector space over 𝔽. Its dimension is mn.



Matrix multiplication. This is completely different story! 

Definition.

Let A be an mn and B a pq matrix. The product AB is only 
defined if n=p. Then

(AB)(i,j) = σ𝑠=1
𝑛 A(i,s) B(s,j). 

AB is clearly an mq matrix.

Matrix multiplication is obviously noncommutative, it may 
happen that AB exists while BA does not. 

Comprehension. Find an example of two 22 matrices A and B 
such that ABBA.



Matrix multiplication – example.

A
1 2 −2
2 1 3

2 −1
2 2
0 3

B

B
2 −1
2 2
0 3

1 2 −2
2 1 3

A

A
1 2 −2
2 1 3

X

𝑥
𝑦
𝑧

2 4
0



Definition.

Transposition is a unary operation on matrices. If A is an mn
matrix then "A transposed" is the nm matrix AT such that for 
each i and j (1 i n,1 j m) AT(i,j) = A(j,i).

In other words, the first row of A becomes the first column of AT 

and so on.
a1,1 a1,2 … a1,𝑛
a2,1 a2,2 … a2,𝑛
⋮ ⋮ … ⋮

a𝑚,1 a𝑚,2 … a𝑚,𝑛

𝑇

=

a1,1 a2,1 … a𝑚,1

a1,2 a2,2 … a𝑚,2

⋮ ⋮ … ⋮
a1,𝑛 a2,𝑛 … a𝑚,𝑛

Definition.

If A = AT then A is said to be symmetric.



Example.

[1 3 4]𝑇 = 
1
3
4

, 

([1 3 4]𝑇)𝑇 = 
1
3
4

𝑇

= [1 3 4]

Fact. (obvious)

For every matrix A 

𝐴𝑇 𝑇 = A



Fact. (far less obvious but easy enough)

For every two matrices A and B such that AB exists

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

Proof.

𝐴𝐵 𝑇(j, i) = (AB)(i,j) = 

σ𝑠=1
𝑛 A(i,s) B(s,j) = 

σ𝑠=1
𝑛 AT(s,i) BT(j,s) =

σ𝑠=1
𝑛 BT(j,s) AT(s,i) = 

𝐵𝑇𝐴𝑇(j,i)



Switch to slide #15 of the old presentation


