ETMAG CORONALECTURE 9 Linear independence – ctd. Matrices May 18, 12:15 Important changes and corrections in slides 7, 11 and 13! The mistake in slide 13 was found by Ola S. Thank you, Ola.

Definition. (alternate definition od *span*) Let $S \subseteq V$ (a sub<u>set</u>, not necessarily a sub<u>space</u>). Then by *span*(*S*) we denote the smallest subspace of V containing S.

We call span(S) the *subspace spanned by S*.

One advantage of this definition over the other one is it covers the case $S = \emptyset$ without branching.

Fact.

Let V(S) denote the set of all subspaces of V containing S. Then

$$span(S) = \bigcap_{T \in V(S)} T$$

Proof. It is enough to show that intersection of a collection of subspaces is a subspace of V and that is easy. (All contain Θ so intersection does, too, etc.)

Theorem.

The set $S = \{v_1, v_2, \dots, v_n\}$ is linearly independent iff no vector from S is a linear combination of the others.

<u>Proof.</u> (\Rightarrow) Suppose one of the vectors is a linear combination of the others. Without loss of generality we may assume that v_n is the one, i.e. $v_n = a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1}$. Then we may write $\Theta = a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1} + (-1)v_n$. Since $-1 \neq 0$ the set $\{v_1, v_2, \dots, v_n\}$ is linearly dependent.

(\Leftarrow) Suppose now that { v_1, v_2, \ldots, v_n } is linearly dependent, i.e. there exist coefficients a_1, a_2, \ldots, a_n , not all of them zeroes, such that $\Theta = a_1 v_1 + a_2 v_2 + \ldots a_n v_n$. Again, without losing generality, we may assume that $a_n \neq 0$ (we can always renumber the vectors so that the one with nonzero coefficient is the last). Since nonzero scalars are invertible, we have $v_n = (-a_1 a_n^{-1})v_1 + (-a_2 a_n^{-1})v_2 + \ldots$ $+(-a_{n-1} a_n^{-1})v_{n-1}$

Examples. (on linear independence) Decide which sets are linearly independent:

- 1. {(1,0), (0,1)} in \mathbb{R}^2 over \mathbb{R}
- 2. {(x, y), (2x, 2y)} in \mathbb{R}^2 over \mathbb{R}
- 3. {(1,2,1), (1, -2,1), (2,0,2)} in \mathbb{R}^3 over \mathbb{R}
- 4. $\{1, x, x^2, ..., x^n\}$ in $R_n[x]$ over \mathbb{R}
- *5.* {sin x, cos x, x} in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R}
- 6. $\{\{a, b\}, \{a\}, \emptyset\}$ in $2^{\{a, b, c\}}$ over \mathbb{Z}_2

Example 5.

 $\{\sin x, \cos x, x\}$ in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R}

Solution. Consider $a \sin x + b \cos x + c x = \Theta$. The golden question is what the hell is Θ (zero vector) in $\mathbb{R}^{\mathbb{R}}$? Obviously the constant zero function, $\Theta(x)=0$ for every x. Hence our condition means: ($\forall x \in \mathbb{R}$) $a \sin x + b \cos x + c x = \Theta(x) = 0$. This means whatever number we replace x with the equality hold. Try x=0. We get a0 + b1 + c0 = 0, which means b=0. Knowing b=0, try $x=\pi$. This gives us $a \ 0+0(-1) + c\pi = 0$, so c=0. Putting $x = \frac{\pi}{2}$ we get a1 = 0, a=0.

Theorem.

Suppose V is a vector space, dimV=n, n>0 and S \subseteq V. Then

- 1. If |S|=n and S is linearly independent then S is a basis for V
- 2. If |S|=n and span(S)=V then S is a basis for V
- 3. If S is linearly independent then S is a subset of a basis of V
- 4. If span(S)=V then S contains a basis of V
- 5. S is a basis of V iff S is a maximal linearly independent subset of V
- 6. S is a basis of V iff S is a minimal spanning set for V

Definition.

An *m×n matrix* over a field \mathbb{F} is a function A:{1,2,...,m}×{1,2,...,n}→ \mathbb{F} .

A matrix is usually represented by (and identified with) an $m \times n$ ("m by n") array of elements of the field (usually numbers). The horizontal lines of a matrix are referred to as <u>rows</u> and the vertical ones as <u>columns</u>. The individual elements are called <u>entries</u> of the matrix.

Thus an m×n matrix has m rows, n columns and mn entries.

Matrices will be denoted by capital letters and their entries by the corresponding small letters. Thus, in case of a matrix A we will write $A(i,j)=a_{i,j}$ and will refer to $a_{i,j}$ as the element of the i-th row and j-th column of A.

On the other hand we will use the symbol $[a_{i,j}]$ to denote the matrix A with entries $a_{i,j}$. Rows and columns of a matrix can (and will) be considered vectors from \mathbb{F}^n and \mathbb{F}^m , respectively, and will be denoted by r_1, r_2, \ldots, r_m and c_1, c_2, \ldots, c_n . The expression $m \times n$ is called the <u>size</u> of a matrix.

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} & \dots & \mathbf{a}_{1,n} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} & \dots & \mathbf{a}_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ \mathbf{a}_{m,1} & \mathbf{a}_{m,2} & \dots & \mathbf{a}_{m,n} \end{bmatrix}$$

Algebra of matrices **Definition.**

Matrix addition is only defined for matrices of matching sizes, $(A+B)(i,j) = A(i,j)+B(i,j), 1 \le i \le m, 1 \le j \le n$ (addition of functions). $(cA)(i,j) = cA(i,j), 1 \le i \le m, 1 \le j \le n$ (multiplication of a function by a constant)

Fact.

The set of all m×n matrices over a field $\mathbb{F}(\mathbb{F}^{m \times n})$ with these operations is a vector space over \mathbb{F} . Its dimension is mn.

Matrix multiplication. This is completely different story!

Definition.

Let A be an $m \times n$ and B a $p \times q$ matrix. The product AB is only defined if n=p. Then

$$(AB)(i,j) = \sum_{s=1}^{n} A(i,s) B(s,j).$$

AB is clearly an $m \times q$ matrix.

Matrix multiplication is obviously noncommutative, it may happen that AB exists while BA does not.

Comprehension. Find an example of two 2×2 matrices A and B such that $AB \neq BA$.

Matrix multiplication – example.

$$A\begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 0 & 3 \end{bmatrix} B \begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 0 & 3 \end{bmatrix} B \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 3 \end{bmatrix} A$$

$$B\begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 0 & 3 \end{bmatrix}$$

$$X \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
$$A \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$$

Definition.

Transposition is a unary operation on matrices. If A is an $m \times n$ matrix then "A *transposed*" is the $n \times m$ matrix A^T such that for each *i* and *j* ($1 \le i \le n, 1 \le j \le m$) A^T(*i*,*j*) = A(*j*,*i*).

In other words, the first row of A becomes the first column of A^T and so on.

[a _{1,1}	a _{1,2}	•••	a _{1,n} 7	1	[a _{1,1}	a _{2,1}	 a _{<i>m</i>,1}]
a _{2,1}	a _{2,2}	•••	a _{2,n}		a _{1,2}	a _{2,2}	 a _{<i>m</i>,2}
•	•		•	—	:	•	 :
a _{<i>m</i>,1}	a _{m,2}		a _{m,n}		a _{1,n}	a _{2,n}	 $a_{m,n}$

Definition.

If $A = A^{T}$ then A is said to be *symmetric*.

Example.

$$\begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix},$$
$$(\begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^{T})^{T} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$$

Fact. (obvious) For every matrix A

$$(A^T)^T = \mathbf{A}$$

Fact. (far less obvious but easy enough) For every two matrices A and B such that AB exists $(AB)^T = B^T A^T$

Proof. $(AB)^{T}(j, i) = (AB)(i, j) =$ $\sum_{s=1}^{n} A(i, s) B(s, j) =$ $\sum_{s=1}^{n} A^{T}(s, i) B^{T}(j, s) =$ $\sum_{s=1}^{n} B^{T}(j, s) A^{T}(s, i) =$ $B^{T}A^{T}(j, i)$

Switch to slide #15 of the old presentation