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Important changes and corrections in slides 7, 11 and 13!

The mistake in slide 13 was found by Ola S. 

Thank you, Ola.



Definition. (alternate definition od span) 

Let SV (a subset, not necessarily a subspace). Then by span(S) 

we denote the smallest subspace of V containing S. 

We call span(S) the subspace spanned by S.

One advantage of this definition over the other one is it covers 

the case S =  without branching.



Fact. 

Let V(S) denote the set of all subspaces of V containing S. Then

span(S) = ሩ

𝑇∈𝑉(𝑆)

𝑇

Proof. It is enough to show that intersection of a collection of 
subspaces is a subspace of V and that is easy. (All contain  so 
intersection does, too, etc.)



Theorem.

The set S={v1,v2, … ,vn} is linearly independent iff no vector 
from S is a linear combination of the others. 

Proof. () Suppose one of the vectors is a linear combination of 
the others. Without loss of generality we may assume that vn is 
the one, i.e. vn=a1v1+a2v2+ … .an−1vn-1. Then we may write 
=a1v1+a2v2+ … .an−1vn-1+(−1)vn. Since  −1  0 the set {v1,v2, … 
,vn} is linearly dependent.

() Suppose now that {v1,v2, … ,vn} is linearly dependent, i.e. 
there exist coefficients a1,a2, … ,an, not all of them zeroes, such 
that =a1v1+a2v2+ … .anvn. Again, without losing generality, we 
may assume that an0 (we can always renumber the vectors so 
that the one with nonzero coefficient is the last). Since nonzero 
scalars are invertible, we have vn=(−a1an

−1)v1 + (−a2an
−1)v2 + … 

+(−an−1an
−1)vn−1



Examples. (on linear independence)
Decide which sets are linearly independent:

1. 1,0 , (0,1) in ℝ2 over ℝ

2. 𝑥, 𝑦 , (2𝑥, 2𝑦) in ℝ2 over ℝ

3. 1,2,1 , 1,−2,1 , (2,0,2) in ℝ3 over ℝ

4. 1, 𝑥, 𝑥2, … , 𝑥𝑛 in 𝑅𝑛 𝑥 over ℝ

5. sin 𝑥, cos 𝑥, 𝑥 in ℝℝ over ℝ

6. 𝑎, 𝑏 , 𝑎 , in 2 𝑎,𝑏,𝑐 over ℤ2



Example 5. 

sin 𝑥, cos 𝑥, 𝑥 in ℝℝ over ℝ

Solution. Consider 𝑎 sin 𝑥 + 𝑏 cos 𝑥 + 𝑐 𝑥 = . The golden 
question is what the hell is  (zero vector) in ℝℝ? Obviously the 
constant zero function, (x)=0 for every x. Hence our condition 
means: (∀𝑥 ∈ ℝ) 𝑎 sin 𝑥 + 𝑏 cos 𝑥 + 𝑐 𝑥 = (x) =0. This means 
whatever number we replace x with the equality hold. Try x=0.
We get 𝑎0+𝑏1 + 𝑐0 = 0, which means b=0. Knowing b=0, try 

x=𝜋. This gives us 𝑎 0+0(−1) + 𝑐𝜋 = 0, so c=0. Putting 𝑥 =
𝜋

2
we get 𝑎1 = 0, a=0.



Theorem.

Suppose V is a vector space, dimV=n, n>0 and SV. Then 

1. If |S|=n and S is linearly independent then S is a basis for V

2. If |S|=n and span(S)=V then S is a basis for V

3. If S is linearly independent then S is a subset of a basis of V

4. If span(S)=V then S contains a basis of V

5. S is a basis of V iff S is a maximal linearly independent 
subset of V

6. S is a basis of V iff S is a minimal spanning set for V



Definition.

An mn matrix over a field 𝔽 is a function

A:{1,2,…,m}{1,2,…,n}→ 𝔽.

A matrix is usually represented by (and identified with) an mn
(“m by n”) array of elements of the field (usually numbers). The 
horizontal lines of a matrix are referred to as rows and the 
vertical ones as columns. The individual elements are called 
entries of the matrix. 

Thus an mn matrix has m rows, n columns and mn entries. 



Matrices will be denoted by capital letters and their entries by the 
corresponding small letters. Thus, in case of a matrix A we will 
write A(i,j)=ai,j and will refer to ai,j as the element of the i-th row 
and j-th column of A. 

On the other hand we will use the symbol [ai,j] to denote the 
matrix A with entries ai,j. Rows and columns of a matrix can (and 
will) be considered vectors from 𝔽 n and 𝔽 m, respectively, and 
will be denoted by r1,r2, … rm and c1,c2, … ,cn. The expression 
mn is called the size of a matrix.

A =

a1,1 a1,2 … a1,𝑛
a2,1 a2,2 … a2,𝑛
⋮ ⋮ … ⋮

a𝑚,1 a𝑚,2 … a𝑚,𝑛



Algebra of matrices

Definition.

Matrix addition is only defined for matrices of matching sizes, 

(A+B)(i,j) = A(i,j)+B(i,j), 1 i m, 1 j n (addition of functions).

(cA)(i,j) = cA(i,j), 1 i m, 1 j n (multiplication of a function 
by a constant)

Fact.

The set of all mn matrices over a field 𝔽 (𝔽𝑚𝑛) with these 
operations is a vector space over 𝔽. Its dimension is mn.



Matrix multiplication. This is completely different story! 

Definition.

Let A be an mn and B a pq matrix. The product AB is only 
defined if n=p. Then

(AB)(i,j) = σ𝑠=1
𝑛 A(i,s) B(s,j). 

AB is clearly an mq matrix.

Matrix multiplication is obviously noncommutative, it may 
happen that AB exists while BA does not. 

Comprehension. Find an example of two 22 matrices A and B 
such that ABBA.



Matrix multiplication – example.

A
1 2 −2
2 1 3

2 −1
2 2
0 3

B

B
2 −1
2 2
0 3

1 2 −2
2 1 3

A

A
1 2 −2
2 1 3

X

𝑥
𝑦
𝑧

2 4
0



Definition.

Transposition is a unary operation on matrices. If A is an mn
matrix then "A transposed" is the nm matrix AT such that for 
each i and j (1 i n,1 j m) AT(i,j) = A(j,i).

In other words, the first row of A becomes the first column of AT 

and so on.
a1,1 a1,2 … a1,𝑛
a2,1 a2,2 … a2,𝑛
⋮ ⋮ … ⋮

a𝑚,1 a𝑚,2 … a𝑚,𝑛

𝑇

=

a1,1 a2,1 … a𝑚,1

a1,2 a2,2 … a𝑚,2

⋮ ⋮ … ⋮
a1,𝑛 a2,𝑛 … a𝑚,𝑛

Definition.

If A = AT then A is said to be symmetric.



Example.

[1 3 4]𝑇 = 
1
3
4

, 

([1 3 4]𝑇)𝑇 = 
1
3
4

𝑇

= [1 3 4]

Fact. (obvious)

For every matrix A 

𝐴𝑇 𝑇 = A



Fact. (far less obvious but easy enough)

For every two matrices A and B such that AB exists

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

Proof.

𝐴𝐵 𝑇(j, i) = (AB)(i,j) = 

σ𝑠=1
𝑛 A(i,s) B(s,j) = 

σ𝑠=1
𝑛 AT(s,i) BT(j,s) =

σ𝑠=1
𝑛 BT(j,s) AT(s,i) = 

𝐵𝑇𝐴𝑇(j,i)



Switch to slide #15 of the old presentation


